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We present a method for and results from the determination of the limit heat- 
transfer power of a thermal tube with a segmented artery. 

Arterial thermal tubes (TT) make it possible, in a number of cases, to obtain higher 
characteristics than in the case of TT with capillary systems (CS) of other types; however, 
the methods of calculating these extreme flows of heat have not been adequately developed. 
No consideration has been given in published papers to the effect of the force of gravity 
on QmaxTT, nor of the excess of the heat-carrying coolant, the existence of orifices within 
the arterial wall for the egress of vapor, and for the unique features involved in the struc- 
ture of the CS. These factors are taken into consideration in the present paper. We examine 
a TT with a segmented artery [i], formed by means of a longitudinal trough-shaped insert 
welded to the housing wall (Fig. i). 

The flow of heat with which the drying out of the threading groove at the end of the 
vaporization zone begins is regarded as the limit heat flow. It was assumed that QmaxTT is 
limited by the available capillary pressure pulse, that the flow of the heat-carrying coolant 
is laminar, that the interaction between the liquid and the vapor is insignificant, that the 
flow of heat is fed in and removed from segments corresponding to the angle 2(~ - ~c), and 
that the heat-flux density is constant. In analogy with the manner in which this was done 
in [2], the coolant circulation contour was divided into two parts: i) the threaded grooves 
in the zone of heat supply, including a segment with a flanged arterial wall; 2) the remain- 
ing elements of the CS and the vapor channel. For each of these parts we have calculated 
Qmax i for various values of the meniscus radius in the CS at the junction between the parts 
of the coolant circulation contour. We have constructed graphs (see Fig. 2) on the basis 
of these calculation results. If at the point of intersection between curves 1 and 2 we have 
R M' e dori/4 cos 8, then QmaxTT corresponds to the point of intersection (Fig. 2a). Since 
it is impossible to achieve a meniscus with a radius smaller than dori/4 cos O, when R M' < 
dori/4 cos O, QmaxTT is found in the manner shown in Fig. 2b. To calculate Qmax i and Qmax2 
we solved the pressure-balance equations. The pressure losses contained in these equations 
for those segments of the coolant circulating contour were determined on the basis of con- 
siderations presented below. 

For the threading grooves in the heat inflow and outflow zones 

d p  _ 1 Q s ~  ---F 
(1) 

For ~he zone of TT heat outflow a minus sign must appear in front of the second term 
in the right-hand side of (i), while a plus sign must appear for the heat-supply zone. The 
area of and the wetted perimeter of the liquid in the lateral cross section of the threaded 
groove, corresponding to the angle ~, are determined from the formulas 

~ = ---~ (n --  2a + sin 2~) -k- 2r(Hn-- r ) c ~  -+- I(Hm__ r ) -k- r sin a]z t g a _  R~[~-- sin ~cos ~], (2) 

/]tcp 

When Rma x e R m ~ Rg, H m = H t 

= 2 [  Hm-r(1-sin~z)coscz ~-r( '~2 --0r (3) 

1989. 

~=arcsi.[ (Ht+r/sin~--r) ]. 
R m 

(4) 
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Fig. i. Lateral TT cross section: i) TT casing; 2) longitu- 
dinal insert, artery wall. 
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Fig. 2. Limit flows of heat from two parts (i, 2, respective- 
ly) of the heat-carrying circulation contour as functions of 
the meniscus radius at the point of contact between these two 
parts. 

Fig. 3. Longitudinal cross section of the TT casing 
in the "puddling" zone. 

If Rmi n ~ R m < Rg, 

~ = [~- -- (~-8)] H Rm sin ~ r q - r .  (5) 
' m = t g ~  s i n s  

L - -  J 

The minimum radius of the meniscus at the inlet to the groove profile is given by 

Rg = (H t-q- r / s in  ~ - -  r) tg a (6) 
cos (~ + 0) 

the minimum radius of the liquid in the groove is 

r cos 0~ 
Rm,n = , ( 7 )  

cos (~ + 0) 
and the maximum radius of curvature for the surface of the liquid in the thermal tube is 

R m a x - - O o w h e n  g = 9 , 8 1  m/sec~ 
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Rmaz = din(din--Hat---6 w) when g -~- 0. (8) 

2din-- Har -- 6 w 

For those segments of the threading groove beneath the flange of the arterial wall (bet- 
ween points A and B) 

~I :din (qD B -- q)A) QraaXi 
2 , ( 9 )  APfla= 2Ll i,~F3t'm.U(St H2) + 8,w~w,dh.w/16] 

s is the length of the corresponding zone (for the supply or removal of heat); 

r t g ~ - - r  ~ c t g a - -  ~ 
H t + s t n ~  ' 2  ( lO)  

H,=2[ / - / t  (1 -~" s-in ~) -I- r ( + - - ~ ) ] .  
L cos ~ ( 11 ) 

For the artery and the vapor channel 

AP ar-~ 2~1 Ha2r 
F 3 ar 

where the effective length of the artery 

Qmaxl 2vvfl2v 
L /at; APv= F---~v/ar, (12) 

I at= /YTL.---~0, 5 ( / in+ /ou~  (13) 

Under the conditions in which the force of gravity is effective the excess of the liquid 
forms a "puddle" within the cavity of the tube. The flow within the "puddle" comes about 
as a consequence of the gravitational thrust. Therefore, in calculating Qmax, resulting from 
the capillary limitation, we can exclude that segment occupied by the "puddle" from the cir- 
cuit containing the coolant circulation tract. The dashed line in Fig. 3 represents the out- 
line of the "puddle" surface under isothermal conditions, while the solid line identifies 
the operational TT. The length x 0 of the "puddle" can be determined through solution of Eqs. 
(14)-(16) with the following boundary conditions: x = 0, ~ =qa; x = x0, V = Vexc: 

dP 

dx 

dy _ din sin tPl dtp 1 
dx 2 dx ' 

2u Qmax [~xH2x 
F3xL 

dV 
dx 

= (9 1--P=)g ( d - ~  c~ r  ~ ), 

(14) 

(15) 

-- Fx--~r, (16) 

where k x = 1 when x < (x 0 - s kx = (x0 - x)/s when x > (x 0 - s 

The area and wetted perimeter of the transverse cross section of the liquid in the "pud- 
dle" zone 

din 
Fx = T (2~.p--- sin 2 ~ ,  (17) 

Hx = din (cP p+ 2 sin qgp). (18) 

The area of the transverse cross section of the artery 

d~n Far-- 8 (2q~a-- sin 2%), (19) 

the volume of the excess heat carrier 

Vexe = (mpr-- V,,Pv-- VcsP:I) l - - i - -  (20)  
9.1 

The losses that arise in the flow of the heat carrier are offset by the pressure pulses 
in the capillaries and due to gravity. These pulses in individual sections of the circula- 
tion tract for the heat carrier are determined from the relationship 
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Fig. 4. Limit TT heat flow as functions of temperature: i, 
2) g = 0; 3, 4) g = 9.81 m/sec 2. QmaxTT, W; T, K. 

1) APt1 = a - -  g (P.i -- P:v ](/TT - -  360) sin #; 
�9 i Rmax (21) 

2) ABt==~( 1 1 ). 
�9 R ~ l n  ~'Ji (22) 

Different methods are applicable to the calculation under conditions g = 0 and g = 9.81 m/ 
sec 2 . 

When g = O, in order to find the relationship between the limit flow of heat in the ini- 
tial portion of the heat-carrier circulation tract and the magnitude of the meniscus radius 
at the joint between the first and second parts of the circulation contour, i.e., Qmax i = 
f(Rm.ji), for each of the several values of Rm.ji a series of values for Qi are specified 

and for each of these on the basis of formulas (9)-(13) we determine the pressure differences 
across the artery, the segments of the CS, in the arterial wall flange zones, as well as in 
the vapor channel, and their total: 

APli = APav~ + APvi q- hPfla~i" ( 23 ) 

We then  de te rmine  the  rad ius  of  the  meniscus in the  t h read ing  groove s i t u a t e d  a t  the  end of 
the  hea t - removal  zone a t  the  edge of the  a r t e r i a l  wal l  f l ange  

Rmi=(AP1~ 2 ) -1" 
- -  d.i--- ~ (24) 

Having so lved  Eq. (1) wi th  boundary c o n d i t i o n s  ~ = 

R m = (  2c~ 2 i - '  
Rmax d in .  ; ~ = ~B: Rm = Rm F (25) 

we determine the pressure difference across the threading grooves of the heat-removal zone, 
i.e., AP t fl i, Qmax 1, and namely, that value of Qi at which the following condition is satis- 
fied: 

APIiq-APfl a = APE1. (26) 

In order to find the relationship Qmax 2 
the boundary conditions 

where APfla2 i denotes the loss 

= f(Rmi), we solve Eqs. (i) and (22) jointly, with 

= = - , (27) % == Rmin, (P (PB' Rm ~ ~'m.j.i. 

of pressure in the CS segment which includes the arterial wall 

flange in the heat-inflow zone. 

Based on the found relationships Qmax i = f(Rm.ji) and Qmax 2 = f(Rm.ji) we construct 

graphs (see Fig. 2) and find QmaxTT" 

When g = 9.81 m/sec 2, we specify a number of values for the length x0i of the puddle 
and for each of these we calculated Qmax i i on the basis of the formula 
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APt~ (28) 
Qmaxli= 2~ re [ vlH2ar-J~ q- ~,'vH~ ] ''' 

Far Fv 
where s = s - (0"5s + x0i)" A numerical method is then used to solve the system of 
equations (14)-(16), and we determine the corresponding x0i value of Vexci. The value of 

Qmaxi at which Vexci is equal to the volume of the excess heat carrier, calculated in ac- 

cordance with formula (20), represents the limit flow in the first portion of the heat-car- 
rier circulation tract, i.e., Qmax i. The calculation of Qmax 2 is accomplished in a manner 
similar to the calculation for the case in which g = 0, with the only exception that the terms 
characterizing the gravitational boost in pressure in the calculation formulas are not equal 
to zero. 

In Fig. 4 we can find the relationships QmaxTT = f(T) calculated on the basis of the 
above-described method for TT with freon-22 and ammonia as the heat-carrying agent:. The TT 
exhibited the following parameters: s = 1500 mm, s = tout = 100m m, din = ii ~n, Har = 
2 mm, dfl a = 0.7 mm, H t = 0.18 mm, S t = 0.35 mm, the Opening angle of the threading grooves 
2~ = 50 ~ , r = 0.05 mm, mpr = 31 g for Freon-22 and 15 g for ammonia. With g = 9.8] m/sec 2 
the TT are horizontal. 

Comparison of these results with those cited in [3] for the calculation of an~onia TT 
of approximately the same dimensions and for CS in the form of longitudinal grooves on the 
inside wall of the housing demonstrate that, for example, at a temperature of 300 K the limit 
flow of the arterial TT is greater by a factor of eight. This proves the high efficiency 
of the arterial CS. The difference in the limit flows for the cases in which g = 0 and g = 
9.81 m/sec 2 may reach 50-100%. This must necessarily be taken into consideration, evaluating 
the characteristics of the TT when g = 0, on the basis of the experimental results for the 
case in which g = 9.81 m/sec 2. Note should also be taken of t~e fact that the relationship 
between Qmax for two values of g depends on the properties of the heat-carrying agent. For 
heat carriers with a relatively small a/p (Freon-22) we have Qmaxg=0 > Qmaxg_9.sl, while 

in the case of ammonia it is the opposite. 

NOTATION 

Q, heat flow; ~, kinematic viscosity coefficient, ma/sec; o, coefficient of surface ten- 
sion, N/m; p, density, kg/m3; 8, wetting angle, deg; L, heat of vaporization, J/kg; g, ac- 
celeration of free fall, m/sec=; n , perimeter, m; S, thread interval, m; s length, m; d, 
diameter, m; r, radius, m; e, porosity. Subscripts: max, maximum; in, inside; ar, arterial; 
liquid; v, vapor; exc, excess; fla, flange; hs, heat supply; out, outflow; t, thread; pr, 
priming; m, meniscus; j, joint; w, arterial wall; zo, zone; h, hydraulic; p, "puddle"; ori, 
orifice. 
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